جیوه در صنعت
شناسایی و کاربردها

مرکز سلامت محیط و کار
اداره عوامل شغلی موثر بر سلامت
و اقدام عوامل شیمیایی
كارگاه آموزشی جیوه

مشارکت مهیجی و کار

imonials:

محل برگزاری: معاونت بهداشتی استان گیلان
تاريخ برگزاری: ۱۳۹۰/۶/۱۲

مدرس: محمد جواد عصاری (عضو هیئت علمی دانشگاه علوم پزشکی همدان)
مقدمه مؤلفین

متنی که در دست داده مجموعه ای از مطالب مهم و عملیاتی در ارتقاب با ماده مخاطره آمیز جیوه به خصوص در بخش صماعت می باشد. علاوه‌ن‌نهایت این مجموعه، نگرانی جهانی و ملی در ارتقاب با مستند هیوه و مخاطرات آن برای سلامت انسان می باشد. مشخص شده است که این ماده با وجود خواص بسیار مفیدی که دارد و در صنایع مختلف از آن استفاده های گوناگونی می شود اما با این وجود می تواند عامل ناهنجاری‌های مختلفی به خصوص از نوع عصبی و برگشت تناژی در انسان و همچنین برخوی مشکلات زیست محیطی متعددی کردد و در نتیجه زندگی انسان و جامعه انسانی را به خطر اندازد.

از آن‌جا که مسئله جیوه هم اکنون به یک نگرانی جهانی تبدیل شده است لذا در راستای این موضوع برنامه‌های محیطی سازمانی که نیز اولین جلسه اش را در ۷ تا ۱۱ دویل برای منشوری جیوه برگزار شده است که هدف آن کنترل جیوه در سطح جهانی می باشد و این نشان دهنده اهمیت موضوع می باشد. از آنجا که کشور ما نیز از جیوه به وفور استفاده می شود در نتیجه منطقی است تا نهادهای منظم آن را کنترل کرد. اینکه چنین برنامه‌ای هم اکنون در وزارت بهداشت درمان و آموزش پزشکی مهم‌ترین شده است و امید است با همکاری سازمان‌های مرتب مهم‌تر وزارت صنعت، معدن و تجارت و همچنین سازمان محیط زیست و... این مسئله مرتفع گردد. از آن‌جا که بخش عمده ای از این برنامه به کنترل جیوه در صنعت می یپردازد و از طرفی اولین کام در شناسایی جیوه می باشد و این وظیفه در خط مقدم بر عهده بازرسین محترم وزارت بهداشت می باشد که باید با توجه به این راهنما در هنگام بازدیدها مسئله جیوه را مبنی قرار دهد. این راهنما همچنین می تواند برای همه کسانی که به نحوی با جیوه سروکار دارند یا در پی کنترل آن هستند اطلاعات مفیدی ارائه دهد. امیدواریم که این تلاش سودمند واقع گردد.

محمد جواد عصاری
عضو هیئت علمی گروه بهداشت حرفه‌ای دانشگاه علوم پزشکی همدان

مهدی علی‌قلی
مسئول عوامل شیمیایی
مرکز سلامت محیطی و کار
رضد صنعت و تکنولوژی با وجود رفاهی که برای بشر پدید آورده است اما باعث شده است که مشکلات جدیدی را نیز ایجاد کند. سهم مواد شیمیایی در این مشکلات بسیار قابل ملاحظه است و یکی از این مواد شیمیایی که نقش عمده ای در ایجاد این مشکلات داشته است فلز سمی "جیوه" می باشد. این ماده به علت خواصی همچون چگالی بالا، قابلیت ایجاد تركیبات متعددی کاربردی و... هم اکنون استفاده از آن بسیار رواج دارد اما از آنجا که در اثر مواجهه با این ماده اثرات نامطلوبی میتواند پدید آید، در نتیجه لازم است تا اقدامات کنترلی لازم نسبت به آن صورت پذیرد. از آنجا که این ماده در کشور عزیز ما ایران استفاده‌های فراوانی دارد در نتیجه برای کنترل این موضوع نیاز به برنامه‌ریزی جامعی وجود دارد که بتواند این مستلزم را حل کند. خوشبختی‌های این برنامه هم اکنون از طرف مرکز سلامت محسوب و کار وزارت بهداشت درمان و آموزش پزشکی تهیه دیده شده است. از اهداف مهم این برنامه شناسایی کارگاه‌ها و کارخانجاتی است که از جیوه استفاده می‌کنند. برای نیل به این مقصود منط‌حارس می‌تواند بسیار کمک کند. باشید. در نهایت امیدواریم با تلاش همکاران، بازرگان و نیروهای متخصص و فعال بهداشت حرفه ای در معاونت‌های بهداشتی استان‌ها این امر هر چه سریع‌تر می‌سرد و شاهد کنترل و حذف خطرات جیوه از محیط‌های کاری باشیم.

دکتر عبدالرضا بهرامی

معاون فنی بهداشت حرفه ای
فهرست مطالب

کلیات.. 6
مقدمه.. 6
منشأت جیوه... 8
مواد کاربرد صنعتی و غیر صنعتی جیوه... 10
تصاویری از مصارف عمده جیوه... 12

منابع انتشار جیوه.. 15
الف- سوخت‌ها، مصرف و تولید انرژی.. 15
ب- تولید داخلی فرازات و مواد خام... 15
ب- تولید داخلی و فرازات پنهان به همراه کاربرد عمده جیوه.................. 16
ت- تصفیه و پیکرک افق‌البین.. 16
ت- مصرف کلی جیوه در محصولات، به عنوان جیوه فلزی و سایر مواد حاوی جیوه 16
ج- منابع متفرقه کاربرد جیوه در صنعت.. 17
د- منابع عمده جیوه در فضاهای عمومی و پاسیف‌ها.................................. 18

چیپ، حفظ محیط زیست و سلامت انسان.. 19
راه‌های ورود جیوه به محیط زیست.. 19
کنتراکت و منابع جیوه... 21
تأثیر جیوه بر سلامتی... 22

کلیات.. 23
نشانه‌های اولویه مواجهه با جیوه... 24
نشانه‌های ناحیه مواجهه با جیوه... 24
گروه‌های در معرض خطر بیشتر.. 24
درمان مسمومیت با جیوه.. 25

کنترل مواجهه با جیوه.. 26
ارزیابی مواجهه با جیوه... 28
مقدار حدود مجاز جیوه.. 29
وقالیف دولتمردان... 29
استرالزی ها.. 31
طالبترا ها... 31

روش‌های تنظیم برداشت و تجزیه جیوه... 33
الف- روش تنظیم برداشت و تجزیه جیوه در هوای... 33
ب- روش تنظیم برداشت و تجزیه جیوه در خون.. 35

منابع.. 37
کلیات
مقدمه:
چربی یک فلز سنگین (عناصری با وزن اتمی 198/619 تا 200/59 و وزن مخصوص بیش از 14 گرم بر سانتی متر مکعب(3) 143гр/cm3) می باشد که در طبیعت به صورت های فلز عناصری (Hg0) و ترکیبات آلی و معدنی با حالات اکسایش یون مركور (Hg2+) و یون مركوریک (Hg2+) توزیع شده است. چرب
فلزی بی بود، با رنگ نقشای سفید و براق، رسانای الکتریسیته، نارسانی گرم و با سنگینی دو برابر اهمیت که در طبیعت در فازهای جامد، مایع و گاز وجود داشته و در دمای معمولی اتاق به صورت مایع است. نام یوناتی چربی هیدرازیم (به معنی نقره آبگون است. از این رو در علم شیمی، علامت Hg یا برای آن در نظر گرفته تا علت این فلز، آرزیش و نیروی به معنای نقره چابک می‌باشد.
تولیدات جهانی چربی از معدن‌های آفریقا، چین، آسیا و قفقزستان تأمین می‌گردد. جهاب آفریقا با دفعه کمی‌ترین آلیانده های زیست محیطی بوده که بسیار به فرم شیمیایی، اثرات سیاسی نشانه‌ای برای انسان ایجاد می‌کند. رها شدن چربی به داخل اتمسفر، حدود 6000 تن در سال 1980 براورد شده است. این فلز در صنایع شیمیایی (۳/۰)، الکتریکی، الکترونیکی و یا عیاری سازی (۳/۵) و ساخت لوازم و دستگاه‌های اندازه‌گیری، مصرف دارویی، ساخت دماسنج ها، انواع آفت‌کش‌ها، تهیه ملغمه، تولید سود سوزار و کلر و کلینیک‌های دندان پزشکی (۴/۰) کاربرد دارد.
در جدول زیر مصارف چربی چربی در بخش‌های مختلف (سال 2005) آمده است:

<table>
<thead>
<tr>
<th>قطعات</th>
<th>وزن (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلر آلکالی و وینیل کلرید</td>
<td>۱۱۵-۱۵۵</td>
</tr>
<tr>
<td>معدنکاری</td>
<td>۸۰۰-۱۱۰۰</td>
</tr>
<tr>
<td>باتری ها</td>
<td>۳۰۰-۶۰۰</td>
</tr>
</tbody>
</table>

1. Hydrargyrum
2. Argegentum Vivum
چیخ به دو شکل کلی وجود دارد: چیخ غیرآتی (عناصری، معدنی) و آنی. مهم ترین شکل چیخ، چیخ غیرآتی است که از طریق فرایندهای طبیعی و به شکل بخار در هوا آزاد می‌شود. بخار آتی چیخ عناصری سمی و تقریباً بدون بو هستند. چیخ قابلیت ترکیب با سایر عناصر مثل کلرین، سولفور یا اکسیژن را دارد. علاوه بر آن، چیخ در ترکیب با کریبتین، جیوه آتی را تشکیل می‌دهد.

چیخ غیرآتی برای ساخت کلسیم و سود سوز آور و نیز در دما سنج‌های جیوه ای و پر کننده‌های معدنی‌شکل و نیز در باطری‌ها کاربرد دارد. از نمک‌های کلسیم‌های جیوه از قبیله کمره‌ها در تهیه کلرین، کلر

کلر کلارک و یوقیل کلارک
ماده‌هایی در مقدار کوچک
پاتریا ها
کاربرد در معدن‌پزشکی
واسطات اندازه‌گیری کلر و کنترل
واسطات الکتروشیمی و الکتریکی
در واسطات عضوی و
دیگر موارد

چیخ غیرآتی به عنوان آفت کش کاربرد دارد. ترکیبات چیخ آتی با به صورت آرامش‌رسیده‌ای اند که پنل مرکوریک استخوان می‌شوند. پنل مرکوریک دست رد آگاهانه‌ای اند که پنل قرمز‌های کلری کلرید چیخ. ترکیبات چیخ آتی محرک بوده و غشاها مخاطی اند. پلاری مشهور میان‌مانند در زاین در اثر ترکیبات چیخ آتی به وجود آمد. در حالی هم وزن چیخ آتی ده برابر چیخ آتی است. به طور کلی مواجهه با چیخ آتی، توانایی

حمل آن در طی تولید با استفاده ایجاد گردید.
سنگ معدن جیوه بیشتر به صورت سولفور سرخ رنگ جیوه (HgS) یا سنیبار با درجه خلوص ۸۲٪ است که این را تا حدود ۶۰۰ درجه سانتیگراد در کوره‌های دوار حرارت می‌دهند تا گوگرد آن با اکسیژن ترکیب شده و به صورت یک هیدرید سولفور از محفظه خارج شود. آن گاه با سرد کردن بخار جیوه، فلز جیوه به است که از آن غلظت جیوه در اغلب خاک ها بین ppb ۶۰ - ۱۰۰ می باشد. کانتاشیاه این عنصر (به صورت رگه ای)، در کمربندی اکسیدیت رنگ سیاه، در سنگ های آنششانی و نیز جسمه های آب گرم و بیشتر سنگ های آذرین به وفور وجود دارد. این فلز به آسانی تبخیر شده و به کاغذ گاز بیو و بی رنگ تبدیل می‌شود. لذا نگاه داری جیوه در ظروف دریا، موجب غلظت قابل توجه آن در هوا و محوطه هایی که به خوبی تهویه نمی شوند می‌گردد. در میان فلزات سنگین، جیوه پایین ترین نقطه جوش را دارا بوده و نهایی فلزی است که در درجه حرارت اتاق به صورت مایع می باشد. از این نظر جیوه در میان همه فلزات دارای یک موقعیت ویژه است، به طوری که زمانهای بسیار دور این فلز در سنگ و معدن جیوه در شرایط محیطی و بدون به جیوه مرکوریک (Hg²⁺) تبدیل می شود. بخار جیوه در مقایسه گازینی قابل حل در آب است (۱μg/l در ۵۵³C).

مشخصات جیوه:

عدد اتمی: ۸۰
وزن اتمی: ۲۰۰/۴
چگالی: ۵/۳
فشار بخار Pa ۱۸/۷۵ در ۲۰ درجه سانتیگراد

قطعه جوش: بالاتر از ۳۸ درجه سانتیگراد
قطعه انگشت: ۳۹ - درجه سانتیگراد
چگالی نسبی بخار نسبت به هوا: ۹۳/۶
ساخت‌مان سولفید جیوه

جیوه در طبیعت از آزاد شدن گاز‌ها از بوسته زمین و اقیانوس بوجود آمد و به شکل بخار اکسیژنی در اتمسفر منتشر می‌گردد. این فلز همچنین از سوخت‌های فسیلی، سوزاندن زغال سنگ و مصارف صنعتی نیز آزاد می‌شود.

جیوه به صورت طبیعی، به قرم‌های مختلفی در محیط وجود داشته که عبارتند از جیوه فلزی، ترکیبات غیرآلی مانند کلرید جیوه، هیدروکسید جیوه، سولفید جیوه و ترکیبات آلی. یون مثل مرکوری، نمونه‌مرکوری و دی متل‌مرکوری. جیوه قلی با عناصر دیگری از قبیل کلرین، سولفور، Ya اکسیدن ترکیب شده و تشکیل جیوه غیرآلی می‌کند که به صورت بودره‌ای سفید یا کرسی‌پالاکلای (CA)، فاینرده است که طی آن جیوه برای جهت تولید هیدروژن، هیدروکسید سیدم، سود سوزارو، مواد سیفیتی کاندا و محصولات دیگر از الکترولیز نمک‌ها استفاده می‌شود. جیوه همچنین با کربن ترکیب شده و سایر ترکیبات جیوه آلی را را می‌سازد که یکی از عمده‌ترین آن‌ها می‌تواند کربنیک است، این فلز راحتی با گوگرد و هالوژن‌ها ترکب شده و غیر از این‌طور نیتریک گرم و غلیظ و محصول اشتباه نیتریک و اسید سولفوریک، بر سایر اسیدها اثر ایست. به لحاظ تابث مانند ضریب انرژی حرارتی جیوه در محدوده 300 – 390 درجه سانتی‌گراد می‌باشد. این سختی دمایی‌های جیوه ای را در سال 1714 میلادی اختراع نمود که هم‌چنان مورد استفاده می‌باشد. به لحاظ ناجی بودن ضریب فشدرگی جیوه، آن در ساخت‌مان‌تهرا استفاده می‌شود.

خاصیت مهم دیگر جیوه قابلیت حل کردن کلیه فلزات به جز آهن و نیکل و تشکیل فلزات است. به در دندانپزشکی کاربرد وسیعی دارد. بعد از طبیعت، حضور پرکردنی آتامگام مهم ترین منبع برای مواجهه مستقیم جمعیت‌های عمومی با جیوه شناخته شد است. ملهمه‌ها اغلب از الکترولیز محصولات فلزی که کادان آن جیوه یا پاشد، حاصل می‌شوند. باید توجه داشت که جیوه یکی از آلاینده‌های مهم زیست محیطی بوده و در برخی کشورها مانند زاین و عراق سایبی ناخوش‌آمدی از خود به‌جا گذاشته است.

اسناد از طریق منابع سیبیری مانند زمین‌گذاری، آب، هوای و مواد سطحی در معرض جیوه قرار می‌گیرد. در بیش از ۷۹ تا ۸۸ درصد اصلی مواد جیوه آلی موجود در غذا است. منبع کوری فرم بسیار سرمای جیوه می‌باشد که اغلب به وسیله میکروارگانیسم‌های موجود در آب، خاک و یا منهای های خار دار در نوار‌های خوراکی است. (Tuna) ساخته می‌شود. ماهی‌های برزگ نیز نمایندگانی از خوردن جیوه داند. در نوار‌های خوراکی از طریق خوردن ماهی‌های آلوده یکی از برترین منابع مسمومیت با جیوه برای مادران مسمومیت است. به طور طبیعی میزان پسار کمی جیوه داندن که از کاربرد به کار رفته، واژه‌ی جیوه و ترکیبات آن ناشی می‌شود. استفاده از فلزات کش‌هایی که در ترکیب آن‌ها جیوه به کار رفته، ضایعات آتامگام (مواد بر کندنه دندان)، صنایع داروسازی و کاغذ سازی، بخی از روش‌های استخراج طلا و رژی سوخت‌های فسیلی مانند بزین و زغال سنگ، صنایع تولید کننده سود سوزارو و فراناید تهیه می‌شود.

از دیگر منابع ورد جیوه به اکوسیستم‌های طبیعی به شمار می‌رود. با توجه به زوت‌شیری، متالوژی و زمین‌شناسی کانسپت‌های جیوه، به نظر می‌رسد که پتانسیل‌های خوبی برای این فلز در ایران وجود داشته باشد. نشانه‌هایی از وجود جیوه و کانی سبیلار در جنوب کشور، شمال تکاب، غرب همدان و آذری‌باجان غربی گزارش شده است. میزان واردات جیوه در ایران از ۶۰۰۰ تن
موارد کاربرد صنعتی و غیر صنعتی ژیوه:
در حال حاضر بیش از ۶۰۰ شغل وجود دارد که با ژیوه مواجهه دارند. برخی از این مشاغل عبارتند از: تولید و سایر اندام‌های گیر (مانند دماسنج‌ها و فشار سنگ‌ها)، لامپ‌های الکتریکی، باتری‌ها (به ویژه باتری‌های الکترولیت‌های تا قبل از سال ۱۹۹۶)، ترمومترات‌ها، لامپ‌های فلورسنت و نتون، رنگ‌های لانکس قدیمی، آینه‌ها، دیگرهای بخار، اکسیدسازی ترکیبات آتی (به عنوان کاتالیست)، استخراج طلا و نقره از سنگ‌های معدنی، کادمان در الکترولیز، یک سو کنده‌های جنین برق، تولید کر، کاغذ، آمالگام‌های دندان پزشکی، گریس، رنگ‌های محیط‌آب، مواد منفجره، فتوغراف‌ها، حشره‌کش که فارق کر دارد، تولید فولاد، تعییر دستگاه‌های هوشمند، کلید‌های الکتریکی بی‌سیم، زانه‌سازها، بایکی، چرم‌سازی، تاکسی‌های دیرو، نیروگاه‌های زغال‌سوز و گاز، سواری، کارهای آزمایشگاهی مرتبط با ژیوه، خنک یکنده‌های راکت‌های هسته‌ای، نقاشی، جواهرسازی و غیره، ویژگی‌های فیزیوکمی‌ای، این فلز را جهت مصرف تکنیکی زیر مناسب می‌سازد:

- تجزیه به روش اسپکتروسکوپی، به دلیل فشار بخار بالا و انتشار از راه تبیخ
- استفاده در دماسنج‌ها، حل کشش سطحی ساخت و استوانه حلالی کیسی
- در ساخت ترمومترات، سنگ‌های الکتریکی و الکترودها، به عنوان هدایت الکتریکی بالا
- در فشارسنج‌ها، بارومترها و دیگر وسایل کنترلی به دلیل گرم‌مایی ویژه و وزن مخصوص بالا
- استفاده در ساخت آمالگام و سایر ملغمه‌ها

ژیوه در صنایع به شکل فلز، ترکیبات آلی و ترکیبات معدنی استفاده می‌شود. ترکیبات آلی ژیوه شامل گروه‌های هیدروکربنی آرماتیک که ایفای نقش کلی را در ساخت گاز کر و سود سوز آور دارند. از فرم‌های ژیوه در ساخت گاز کر و سود سوز آور، دما سنج‌های ژیوه ای پر کننده‌های دندان پزشکی، مخازن فشارسنج، باتری‌ها، بعضی از رنگ‌های پلاستیکی، لامپ‌های فلورسنت، تجهیز کرم‌های ضد افتادگی و غلاف‌های کنده‌ای انواع بیش از از فرم غیرالی ژیوه در ساخت آمالگام‌ها، مواد ضدعفونی‌کننده، باتری‌های خشک و مواد نگاهی مدار دارند. موجود در بعضی ترکیبات دارویی استفاده می‌شود.

یکی از کاربردهای مهم ژیوه، ساخت ملغمه‌ها می‌باشد. ملغمه‌های الیاف ژیوه با فلزات یا ترکیبات فلزی است. به عنوان مثال، ملغمه‌های کادمان که برای پر کردن دندان به کار می‌رود، الیاف ژیوه به نسبت نیتری از جویه مایع و مخلوط نقره و قلع است. از ملغمه‌های ژیوه از سال ۱۹۰۰ برای استخراج نقره استفاده می‌شده که به ازای هر گرم نقره، یک گرم ژیوه وارد چو می‌کرد. امروزه هم در برخی کشورها برای استخراج طلا از
هلغمه چيرو استفاده مي كنيد، به اين ترتيب كه با افزودن چيرو به خاک معدني كه حاوي مقدار كمی طلا يا
نقره است، با تشکيل هلغمه آن را استخراج كرده و سپس با گرم كردن، چيرو را تبخير مي كنند. در برشی از
كارخانجات كلا- قليا كه از طريق الکترواليز محلول آبی، سدیم کلرید را به محصولات تجاري
کلروهیدروکسید تبديل مي كنند، هلغمه آي از سدیم و چيرو را به كار مي برد. وقتی سدیم در هلغمه چيرو
حل مي شود، از ميزان واکنش پيدا كرده آن نسبت به سدیم آزاد كاسته مي شود، به طوري که سدیم بسیار
با آب واکنش نمي هده، از طريق سدیم، هيئدروسید عاري از
نمک به دست مي آورند و چيرو را بازيابي و مجددا به سلول اصلی مي گردانند. اما به هر حال، بازيابت
چيرو كامل نبوده و مقداري از آن به هوا يا به رودخانه كه آب مورد نياز خنک دستگاه ها از آن
塔مين مي شود، راه مي یابد، امروزه در كشورهای صنعتي برای جدا كردن محلول چيرو از محلول عاري از
کلر، از هلغمه مي شود. در پساب كارخانجات
کلا- قليا، يون مکروکیت (+) (Hg2+) وجود دارد. مهم ترين كاني چيرو، HgS، نمک بسيار نامحلول در آب
امت و برای بهبودي پساب كارخانجات با افزودن نمک محلول رسوب HgS و Na2S يون چيرو را به صورت
مي دهند. نمک نيترات +Hg به كار مي رفت. به همين دليل کارگران كلاه دوري، اغلب دچار ناهنجاري هاي عصبی مانند لرزش ماهيچه،
افسردگي، فراموشني و ... مي شenden.

یکي ديگر از مصرف عمده چيرو، توليد لامب بخار چيرو يا لامب هاي کم مصرف مي باشد. اين
لامبها باعث سرچربی در مصرف افزود شده و طول عمر بيشتری دارند. لامپهای کم مصرف مصرف را
تا 6 برابر لامپهای معمولی بهينه مي كنند، اما كمتر كسي است که بداند اين لامب ها به دليل وجود چيرو,
چيز زبالههای خطرناک هستند و در صورتی که همراه با زبالههای ديگر و به روش سنتی دفع شوند، موجب
آمودگي محيط خواهد شد. در برشی كشورها قرار دادن اين لامپها همراه سایر زبالههای جرميهای
ستگنين دارد اما مستثنیات در كشور ما در اين زمينه اقدامات و اطلاع رسانی مناسبی صورت نگرفته و مراکز
هم برای جمع آوری زبالههای خطرناک وجود ندارند و حتی روی مستندابن اين لامپها نيز هيچ هشداري
دارباره خطرناک بودن بخار چيرو ذكر نشده است. وقتی يك لامپ کم مصرف مي شکند، بخار چيرو صمي
منتصب مي شود. به همين خاطر نابيد به خرده هاي لامپ کم مصرف مد نذر به براي كرد كه از
مالوبرقی استفاده كرد. بلکه باید فورا پنج رها يا بار، و به مدت 15 دقیقه اتاق را ترك كرد تا بخار چيرو از
محيط خارج شود و سپس با ماسک و دستکش، خردنهای لامپ را در طرف شيغشي دردارا يا دو لايه كيسه
پلاستيک گناشت و در آن را بست. در صنعت ساخت لامب نيز اين امر معمولا بيشني مي ايد.

استفاده از چيرو و تركيبات آن در قاره كش ها، با توجه به تاثير خاصيت سمي چيرو به موجودات زنده
اهميت زيايی دارد. در خلاصه ترکيبات آلی چيرو به منظور پوشش هاي دانه اي به كار برده مي شوند تا
از رشد قارس روي تبوز تشکبروي جلوگي كنند.

ترکيبات چيرو به لوازم بهداشتی و آرامشي به عنوان کرم چيرو زيبايي، محافظ پوست و جلوگي از آنها
به كار مي روند. 6 تا 10 درصد وزن اين فراورده ها را كالوول (کلرید چيرو) تشکيل مي دهد. از آن جايي که

11
چیویه در دندان پزشکی:

آگالگم آلیاژ چیویه فلزی یا یک فلز دیگر شامل قلع و نقره بوده و حدود ۱۵۰ سال است که در دندان پزشکی کاربرد دارد. اگرچه آگالگم از نظر زیبایی نسبت به تریم های هم، رنگ دندان در سطح بابین تری قرار دارد، ولی همچنان به دلیل هزینه کم، طول عمر، دوام مهر و موم کردن، آسان بودن مراح کارکرد و برداشت، وابسته به عوامل ماده تریمی در دندان های خلیفه به خصوص در مناطق تحت فشار، ترجیح داده می شود. در سال ۲۰۰۱ ترمیم های آگالگم برای ترمیم حفرات تحت نیرو در دندان های خلیفه، توسط بیش از ۷۵٪ از دندان پزشکان انگلیس و ۵۵٪ از دندان پزشکان در ایالات متحده آمریکا مورد استفاده قرار گرفته است.

دندان پزشکان یکی از گروه هایی است که در معرض خطر مواد شعلی با آگالگم بوده و چون جیوه در دمای اتاق بیماری می شود، هنگام آماده سازی، خارج کردن و یا برداشت دندان پر شده، منجر به واجهه دندان پزشکان با آگالگم می شود. اگرچه بعضی از مطالعات حاکی از این است که بی خطر بودن واجهه مزمن با چیویه در دندان پزشکان می باشد، ولی گروهی دیگر از مطالعات اثبات کرده اند که آگالگم عوارض قابل توجهی روی سلامت دندان پزشکان ایجاد می کند. بررسی های انجام شده نشان می دهد که مهم ترین فاکتور‌های موتور در افزایش میزان واجهه دندان پزشکان با چیویه عبارتند از: میزان قطرات چیویه فلزی، و باقی مانده های ذرات آگالگم در محل کار، آماده سازی، جای گذاری و برداشت ترمیم های آگالگم‌ها، برش و ترک آگالگم، پروتی تصادفی ذرات، آگالگم هایی که برای مصرف کنار گذاشته شده اند، روش مخلوط کردن آگالگم، پلیش کردن آگالگم، نشست از کبسول آگالگم، هنگام آماده سازی، نوع آگالگم مصرفی، برداشت اضافات چیویه تا مخلوط شده با دست، آگالگم‌های اولتراسونیک، عدم استفاده از ساکنین با مکش بالا هنگام برداشت آگالگم‌های قدیمی، استفاده از استریت‌پلاسیون خشک (فور) و بخار چیویه برخاسته از روز زمین، تهویه و نوع پوشش کف.

علازو به موارد ذکر شده، افزایش سابقه کار و عمر مطلب، رعایت استانداردهای پزشکی مانند عادات شستشو و تمیز کردن و سواژ، سن و سابقه کار دندان پزشک، سابقه کار در هفته و تعداد ترمیمی ها در هفته، از عوامل دیگر یک است که در میزان واجهه دندان پزشکان با چیویه دخالت دارد. تیمار پوست با آگالگم نیز می تواند باعث چیویه گردد. اگرچه این مواجهه اندک است ولی به موروز زمان باعث تجمع چیویه در بدن می شود. در ضمن استفاده از ماسک و دستکش خطر مواجهه را به طور کامل از بین نمی برد.
تصاویری از مصارف عمده چیوه

جیوه در ساخت مهتابی یا لامپ فلورسنت

استقلال از چیوه در تولید سوخت

استقلال در تولید دماسنج و فشارسنج های پزشکی

به عنوان آفت کش

استقلال در باتری تخت ساعتی

برای پرکردن دندان

صنایع ریخته گری

استقلال در صنعت سیمان
شكل بالا: ثيوريزا وكليديا جيروه اي
شكل سمت رايت: فشار سنج جيروه اي
شكل پایین: انواع لامپ های حاوی جیروه
منابع انتشار جیوه

الف- سوخت ها، مصرف و تولید انرژی

مصرف سوخت

1. احتراق ذغال سنگ، در کارخانجات برق تزرگ به خصوص در بولیر های گرمایی ۳۰۰ مگاوات به بالا
2. دیگر استفاده های ذغال سنگ
3. کاربرد نفت سنگین و کک نفتی
4. احتراق با استفاده از گازونیل، بنزین و نفت و کروزن
5. احتراق با کاربرد گاز طبیعی
6. تولید برق و تولید گرمانی جوب و...
7. احتراق زغال جوب

تولید سوخت

1. استخراج نفت
2. تصفیه نفت
3. استخراج و فراواند کردن گاز طبیعی

ب- تولید داخلی فلزات و مواد خام

تولید اولیه فلز (منعی)

1. استخراج اولیه جیوه و فرابند اولیه آن
2. تولید روی از کنستانته
3. تولید مس از کنستانته
4. تولید سرب از کنستانته
5. تولید سرب از کنستانته
6. استخراج طلا به روشی به غیر را املاح گیاهی جیوه
7. تولید آلومین از بوکسیت (تولید آلومینیوم)
8. تولید فلزات آهن اولیه (اوه، تولید فولاد)

معدنکاری طلا با املاح گیاهی کردن جیوه

1. معدنکاری طلا با املاح گیاهی کردن جیوه- از کل سنگ معدن
2. معدنکاری طلا با املاح گیاهی کردن جیوه- از کنستانته
3. معدنکاری طلا با املاح گیاهی کردن جیوه- از کنستانته و با استفاده از پساب

تولید دیگر مواد با حجم بالا با انتشارات جیوه

1. تولید سمنان
2. تولید مقوای و کاغذ
ب- تولید داخلی و فراورنده‌اند به همراه کاربرد عمده چیوه

تولید مواد شیمیایی و پلیمرها
1. تولید کزانکانی با سلوهای چیوه
2. تولید VCM
3. تولید استاللهبید با کاتالیست چیوه

تولید محصولات محتوی چیوه
1. دماسنج‌های چیوه ای (زیست‌کشی‌ها، آزمایش‌گاهی و صنعتی)
2. سوئیچ های الکتریکی و رله های حاوی چیوه
3. منابع نوری حاوی چیوه (لامپ‌های مهتابی، لامپ‌های فشرده و کم مصرف چیوه ای و...)
4. باتری‌های حاوی چیوه
5. فشارسنج‌ها و گیغ‌های حاوی چیوه
6. افت کش‌ها با بوسایید های حاوی چیوه
7. رنگ‌های حاوی چیوه
8. کرم‌های رونان کننده بوست و صابون‌های با مواد شیمیایی حاوی چیوه

ت- تصمیم و بازیافت فاضلاب

بازیافت
1. تولید چیوه بازیافتی (محصول ثانویه)
2. تولید فلزات اولیه بازیافتی (آهن و ورق)

سوزاندن پسماند‌ها
1. سوزاندن پسماندهای شهردای و عمومی
2. سوزاندن پسماندهای خطرناک
3. سوزاندن پسماندهای پزشکی
4. سوزاندن لجن فاضلاب
5. سوزاندن پسماند به صورت روباز (در منطقه دفن یا به صورت غیر رسمی)

رسوب‌افشانی پسماند
1. دفن پسماندهای شهری
2. نیل انتار گردن غیر رسمی پسماندهای عمومی

توصیه فاضلاب

ث- مصرف کلی چیوه در محصولات، به عنوان چیوه فلزی و سایر مواد حاوی چیوه
1. استفاده و دفع محصولات حاوی چیوه

16
بازتاب روی حاوی جیوه.

بازتاب اکسید جیوه (سولو های دکمه ای (مثل باتری ساکت) و دیگر سایزهای بازرگی که همچنین سولو های جیوه- روی نیز نامیده می شوند.
10. دیگر سولو های دکمه ای (روی-هو، سولولوی فلزی آلکالین، اکسید-تره). 11. دیگر باتریهای حاوی جیوه (باتریهای خرید، قلمی، پرمانگنات و...)

سایر موارد
12. استفاده پلی اروی نان (PU, PUR) تولید شده با استفاده از کاتالیست جیوه
13. زنگ های با گردش‌های جیوه
14. کر مه سفید کننده بوست و صابون های شیمیایی حاوی جیوه
15. گیچ ها با نشانگر های فشارخون پزشکی (مانومترهای پزشکی)
16. دیگر مانومترهای و نشانگرهای حاوی جیوه
17. مواد شیمیایی آزمایشگاهی
18. دیگر تجهیزات آزمایشگاهی و پزشکی حاوی جیوه (بروسمتری، پیکومتری، الکترودهای معلق= پلازمری

ج- منابع متفق اکسید جیوه در صنعت
1. احتراف سیگ رس نفتی
2. احتراف ذغالسند
3. تولید زئوت‌مربرق
4. تولید دیگر فلزات بازیافتی به غیر از موارد مذکور
5. تولید نان
6. تولید توده‌های سبک وزن مثل مه‌های رسمی برای کاربردهای ساختمانی
7. تولید کاربن و هیدروکسید مسیمی ناشی از تکنولوژی سولولوی جیوه
8. تولید پلی اروی نان با کاتالیست جیوه
9. آراستن دانه‌های گیاهی با مواد شیمیایی حاوی جیوه
10. نیمه رسانه‌های تشخیص پترو زیره فرمز

17
منابع عمده جیوه در فاضلاب‌ها و پسماندها

- پرتوهای دندانپزشکی (پزرتور مبین)
- فضای‌پذیرای انسانی
- تولیدات خانگی
- آب حاصل از شستن لباس ها
- بیمارستان‌ها
- صنعت
- آرمان‌ها
- مدارس و دانشگاه‌ها

که ۳ مورد اول بزرگترین منابع را تشکیل می‌دهند.

با توجه به موارد مذکور پایستایی در حین تکمیل فرم پازدید کارگاهی توسط پردازمان بهداشت کار، تاکید لازم در جهت استخراج اطلاعات مورد نیاز برای تکمیل فرم‌های گزارش‌های جیوه صورت پذیرد.
چیخو، حفظ محیط زیست و سلامت انسان

راه‌های ورود چیخو به محیط زیست:

افزایش جمعیت، تصفیا به برای تولید محصولات گوناگون را به دنبال داشته است. رشد اقتصادی، پیشرفت صنایع و مدرن تر شدن تکنولوژی، غلظت بر تجارت مبتنی که در زندگی بیش از یک جرهم، مشکلاتی را نیز برای او فراهم کرده است. این وارد آلاینده‌های مختلفی در طبقه صنایعی بحث زیست می‌باشد. در این میان صنایع شیمیایی به دلیل وارد کردن ترکیبات غیر قابل تجزیه بیولوژیک و تجمع پذیر مانند سموم دفع آفات و فلزات سنگین از اهمیت ویژه ای برخوردار می‌باشد. از جمله فلزات سنگینی که از طریق صنایع وارد آب دریا می‌گردد، چیخو است که به دلیل خطرناک بودن یک تهدید جدی برای محیط زیست و سلامت افراد بوده و تا اینجا که ممکن است، باید مقدار آن را در پایین‌ها کاهش داد.

چیخو به عنوان یک گاز از منابع طبیعی و فعالیت‌های مانند صنایع ماده خروجی از آتششتاب‌های هاست که قبل می‌گیرد. محیط معمولی می‌شود. چیخو در هوا محوسب می‌شود. چیخو یا می‌تواند شکل‌گیری از خوردگی که در کرده و پس از به‌سره شدن یا رسیده کننده در خاک و آب‌های رنگ کند، شاید دیگر یک می‌شود که به منبع، گرفت‌مین مجموعه‌اندیکی از آن، به دو می‌تواند مختلف است. جیوه یا مخلوط در هوا می‌تواند مصرف یا زیادی را در منابع طبیعی کرده و پس از به‌سیره شدن به وسیله نارنجک، در خاک و آب‌های رنگ کند، شاید یکی از منابع آلودگی آب ها به چیخو تحلیلی فاضل‌باهایی صنعتی کارخانه‌های کاغذ‌سازی، تولید کلر و چربی‌سازی PVC می‌باشد. استفاده‌ای از ترکیبات الی‌جهیط به صورت قارچی کنها در کشاورزی، از منابع مهم می‌شود. چیخو است.

این ترکیبات در نتیجه تماس با خاک شکسته شده و جیوه آن در تنش‌های در اتصال با گروه‌های گروگردان در خاک دیگر رس و ماده آبی آن نمایانه می‌شود. محیط زیست می‌شود. می‌تواند فعالیت‌های انسانی در این منابع باقی می‌مانند، در محیط زیست هستند. اما این توجه داشته که طبیعت نیز خود یک از این عوامل باقی می‌مانند چیخو می‌باشد، به دلیل محتوای بودن زیمنه‌های طبیعی چربی. تفریق سطوح طبیعی و تجاری در هر خاک از محیط دیوار است. از طریق رخدادها و شرایط آب و هوایی مانند رسوبات طبیعی، فعالیت‌های آتششتاب‌ها، فرآیند زمین و طوفان ها، سالانه حدود ۵۰۰ تن چربی وارد دریا می‌شود. از طریق ۵۰۰ تا ۴۰۰۰ تن از جیوه در سال به ارسال مهمی چربی‌های محیط زیست می‌شود. به طوری که جیوه و تخریب فیزیکی و شیمیایی سنگ‌های سالانه در حدود ۲۳۰ تن جیوه وارد دریاها و اقیانوس ها می‌شود.

مکانسپه‌هایی که وسیله آن ها چیخو وارد زنبور غذا یا می‌تواند به طور کامل شناخته شده نیستند و ممکن است در میان اکوسیستم‌ها متفاوت باشد، که در این رابطه برخی از اکثریت چربی مهمی را بازی می‌کند. یکی از موارد موجود در محیط زیست که در بروز سولفات‌های اطراف جیوه را از قریب معدن‌های غیرآبی می‌گردد و این را به واسطه فرآیند متابولیکی به ممکن مرتبطی تبدیل می‌کند. تغییر جیوه معدنی به ممکن
مرکوری مهم است. زیرا سمتی آن بیشتر بتواند و ارگانیسم‌ها زمان طولانی‌تری را برای حذف مثيل مراکزی نیاز خواهد داشت. باکتری‌های حاوی مثیل مراکزی ممکن است به وسیله سطح بالاتر در زنجره غذایی مصرف شده و یا توسط باکتری به داخل آب دفع شوند، که در آن جا سریعا به وسیله پلاکت ها جذب شده و پلاکت‌ها نیز به وسیله سطح بدعی در زنجره غذایی مصرف می‌شوند. به دلیل این که حیوانات مثیل مراکزی را سریعترتر از آن که دفع کنند، انتشار می‌کنند، لذا غلظت بالاتری از جیوه توسط حیوانات در هر سطح از زنجره غذایی مصرف می‌شود، از این رو غلظت‌های کم مثیل مراکزی در حیوانات به ویژه ماهی و برندگانی که ماهی مصرف می‌کنند، به آسانی غلظت‌های بالقوه مضر ایجاد کرده و در نهایت در بدن انسان تجربه می‌گردد. منابع انسانی انتشار جیوه، تجمع زیستی و راه‌های کنترل آن در محيط زیست، در شکل هایی تهیه شده است:

تناسهای شغلی با جیوه در ایران به علت ناخاصیت در صدعارت عمدا در واحدهای کارالانگی‌های پتروشیمی، معادن جیوه، کارخانجات تولید، مرکز علی‌الله و کلینیک‌های دندانپزشکی رخ می‌دهد(9). بزرگ‌ترین محل استفاده از جیوه در فراکسید الکترولیز نمک طعام در تولید سود و کلر است. منابع تولید مختلف برای جیوه وجود دارد که از راه‌های مختلف انتشار یافته و بر انسان و محیط زیست تاثیر می‌گذارند(شکل 1). انتشار جیوه ناشی از تولیدات انسان در محیط زیست نیز از منابع مختلفی است که از راه‌های خاصی نیز منتشر می‌شود که خلاصه آن را می‌توانید در شکل 2 بیشتر بدانید(3).

شکل 1- منابع اصلی انتشار جیوه و راه‌های کنترلی
شکل ۲- منابع انسانی انتشار جیوه و تجمع زیستی آن

کینتیک و منابع جیوه:

کینتیک جیوه که شامل مراحل جذب، انتشار، متانولیسم و دفع آن می‌باشد، به میزان زیادی به فرم جیوه (جیوه عنصری، ترکیبات غیر آلی، آریل، الكوسل و آلکنل) جذب شده است. به طور مثال آمالگام که حاویی ۴۰-۴۵ درصد جیوه و ۲۰ درصد نقره بوده و به عنوان ماده ترمیمی در دندان پزشکی به کار می‌رود، یک سم است اما نمی‌تواند برای ما خطرناک باشد، زیرا این ماده به سختی اتم های جیوه را نگاه می‌دارند. همچنین کلرور مکرور که هر مولکول آن دو اتم جیوه و دو اتم کلر دارد، یک سم است. فولیمینات جیوه در حالت کلرور مکروریک که مولکول آن یک اتم جیوه و دو اتم کلر دارد یک سم است. همچنین هر مولکول مکرورگوم که برای معالجه‌ی زخم‌ها به کار می‌روند نیز دارای یک اتم جیوه است.

جیوه از طریق دستگاه تنفس، دستگاه گوارش و بوست می‌تواند وارد بدن شود. اصلی ترین راه چسب جیوه در مواجهات شغلی استنشاق هوا آلوده یا ناماس پوستی در محیط کار دندان پزشکی، خدمات بهداشتی، صنایع شیمیایی و غیره می‌باشد. در حالی که خوردن ماهی و حلزون های صدفدار آلوده به می‌تواند مکروری، استنشاق بخارات موجود در هوا که به‌طور یک‌باره با آلوده می‌شود. که سوخت حاوی جیوه می‌شود و رها کردن جیوه در اثر امور دندان پزشکی و خدمات بهداشتی درمانی، راه‌های مهم مواجهه
جمع‌یت‌های عمومی با یک جیوه به‌اشناد. جیوه غیر آلی (جیوه فلزی و ترکیبات غیر آلی جیوه) از طریق ته‌نشست طبیعی، زباله‌ها و فعالیت‌های انفجاری، وارد آب‌ها و خاک، و از طریق سنگ‌های معدن، سوزاندن زغال سنگ و زباله و پس‌بندی‌ها وارد آب‌ها و خاک می‌شود. برخی از جیوه‌های آبی و خاک به‌منظور کنترل تبدیل‌های مس و سنگ، سپس وارد بدن ماهی و سایر آبزیان می‌گردد و به‌خاک و منابع انسانی توزیع می‌شود. این ترکیبات به‌عنل‌خلال‌یت‌ در چربی زیاد، در مقایسه با ترکیبات غیرآبی، آن سمی‌تر می‌باشد.

همی ترین راه مواجهه شغلی با جیوه، استنشاق بخار جیوه می‌باشد. در حالی که پر کردن دندان‌با آمالگام، منبع اصلی مواجهه در جمع‌یت‌های عمومی است. هر از گونه‌های اتصالی در طی تاسیس‌های جدا بخار جیوه و تماس به مدت چند ساعت می‌تواند ایجاد برونشیلت و پنومونیت کند. جیوه از شیاه‌های جیران خون نفوذ کرده، سپس از سد خونی - مغز گذشته و آسم شدیدی به محیط‌سنجی مشکوک، در بدن شکل می‌گیرد. جیوه تنها جیوه محول در چربی است و بعد از استنشاق به آسانی از طریق آلوده‌ها وارد جیران خون می‌شود. بلع‌الاحا از بخار غیرآلی جیوه به مدت حاد در طی چند ساعت با علامتی کلاسپلی و علائم ناراحتی و مهاجمی، کند. جیوه از جیران خون نفوذ کرده، سپس از سد خونی - مغز گذشته و آسم شدیدی به محیط‌سنجی مشکوک، در بدن شکل می‌گیرد. در روشهای به کم‌گردی می‌رنگد، این مورد سایر جهت‌به‌جهتی که برای درمان یوستس از بلعیدن جیوه استفاده می‌کردند، مصداق داشته است. استنشاق راه مهمی برای مواجهه با HgS محسوب می‌شود. به طوری که حدود 80٪ از بخار جیوه استنشاق شده در جیران خون باقی مانده و از این طریق در بافت‌های توزیع می‌شود.

همیت‌جذب پوستی Hg2+ ناجی بوده و بخار جیوه به سرعت متوسط 240 μg/m2 در دقیقه جذب می‌شود. این مقدار فقط 22٪ جذب جیوه هم‌زمان با جذب ریوی را تشکیل داده و فقط نیمی از جیوه جذب شده از راه پوست، می‌تواند مانند جیوه سیستمیک رفتار کند. بخار جیوه مکرراً در تمام بدن توزیع شده و به آسانی از سد خونی-مغزی و جفت عبور کرده و در شهر و سایر مباحث پنومونیک ظاهر می‌گردد.

مکانیسم پنومونیک ترمیم‌نامک این اکسیداتور، انتزاع کاتالاز در حضور پراکسید هیدروژن می‌باشد. البته در حیوانات واقعی احیاً Hg2+ به Hg0 نیز دیده می‌شود. Hg0 نیز دیده می‌شود. Hg0 تیامیل زیادی جهت تبدیل شدن به متیل جیوه دارد. که در اینصورت به راحتی از غشاء سلیولی و سد خونی-مغز عبور نموده و سپس در حد Hg2+ آمیزه شده و اعمال سمیت می‌کند.

اداره و مبادله مسئول‌های اصلی دفع جیوه می‌باشد که در صورت مواجهه زیاد، اداره مسیر دفع غالب است. نیمه عمر جیوه در اداره حدود 2 ماه بوده و از آن جانی که مقادیری جیوه اداره‌ای ارتباط‌نطزیکی با سطح سطح جیوه در کلیه‌ها دارد، ادامه گیری جیوه اداره به طور گسترده‌ای برای ارزیابی‌های مواجهه با جیوه‌های آمیزه شده با یک نیمه عمر 18 ساعت می‌باشد. نیمه عمر جیوه کل در کلیه‌ها 64 روز می‌باشد که با Hg2+ مناسب است.
تاثیر چیوه بر سلامتی

کلیات

خطرات استفاده از چیویه توسط مصریان باستان که از برگ‌گان جهت کار در معدن چیویه استفاده می‌کردند، کشف شده بود. احتمالاً به خاطر سیست تملغه چیویه در استخراج طلا برگ‌گانی که در معدن شنگرف (HgS) مواد کار می‌کردند، بعد از ۶ ماه میراند. از اولین قرن هجدهم میلادی توجه دانشمندان به اختلال مواده‌شیلی و مواده افراد عادی با چیویه جلب شد. انواع ترکیبات چیویه، سیمتیت متابولیتی دارند، ترکیبات مانند فنی مکور و الکوکس کیل، کمترین میزان سیمتیت، و ترکیبات الکلی چیویه ببین ترین سیمتیت را دارند.

چیویه از راه تنفسی، گوارش و نیز از طریق بوست قابل جذب می‌باشد. بخار چیویه به سیستم عصبی مرکزی تأثیر می‌گذارد. اما هدف اصلی +2 چیویه‌ها و کبد است. تا کنن مدارک محدودی در ارتباط با سرطان‌ها و چیویه ارائه شده است.

مطالعات جهانی نشان می‌دهند که در نتیجه تماش مستقیم یا استنشاق بخارات چیویه، اختلالات مختلفی به وجود می‌آید که بر خی نشانه‌های عصبی، ناکورآمی، گلی، آلزایمر، تأثیرات مخرب بر سیستم عصبی مرکزی و محیطی، تأثیرات چشمی، مشکلات دهانی، نارسایی حاد تنفسی، درماتیت، دمانس، تهوع، اختلالات نوروساکووتیک، اثر بر روز غده تیروئید، تولید مثل و سیمتیت زی. استنشاق ۱ mg/m3 چیویه بی‌زیانی محسوس نمی‌کند. استنشاق ۱/۱۰ mg/m3 نیز مشاهده گردید.

بعد از این، میلی‌گیوه خطر اکثر ترین شکل چیویه است. استفاده از میلی‌گیوه به عنوان قارچ‌کش برای محافظت دانه‌ها سبب کاهش قابل ملاحظه پرندگانی شد که از این دانه‌ها مصرف کردند و همچنین می‌شد مراکی در عراق و آمریکا از مصرف دانه‌های گندم این با میلی‌گیوه در تماش بوده گزارش شده است. ورود سیموی ترین شکل چیویه به عنوان میلی‌گیوه به بدن انسان، بیماری میانماری‌ها ایجاد می‌کند. این بیماری اولین بار در دهه ۱۹۵۰ در خلیج میانماری‌ها زاین مشاهده شد. بروز این بیماری در انسان‌ها با عوارض کوژ‌اسیا از جمله اختلال در خواندن چگانه، بروز آزمایش‌های سنین پیری و در موارد حاد با مراکی چیویه در نسبت به
نمک‌های +Hg2+ سمّ قوی تری است. زیرا علاوه بر انتقال ذی‌یاری در بافت جری، قابلیت تجمع و بزرگ‌نمایی زیستی دارد. همچنین می‌تواند از سد خونی- مغزی و جفت جنین عبور کند. فرایند متیل‌دار شدن جیوه در تنفس‌شسته‌های گل‌آلود رودخانه‌ها و به‌ویژه در شرایط ناوازی توسط متیل کوبالامین صورت می‌گیرد. بیشتر جیوه موجود در بدن انسان به صورت متیل‌دار جیوه بوده و اغلب از طریق خوردن ماهی وارد بدن انسان می‌شود. متیل‌قامه‌ی جیوه از راه دستگاه گوارش به خصوص در سیستم عصبی مرکزی و کلیه‌ها توزیع می‌شود. به کار درمانی می‌آید که بیشتر اختلالات عصبی تأخیری می‌کند. از جمله این اختلالات: آناکسی، پارانزا، لرزش، کاهش بینایی، بینایی، بی‌پایی، کاهش خونی، اسکلتی- عضلانی ایمونولوژیکی، حسی و ادراری و زنوتکسیک از اثرات جیوه می‌تواند باشد.

تخرب سلول‌های گلیبال، اختلالات حرکتی و مرگ می‌باشد. سیستم عصبی احتمالاً حساس‌ترین ارگان در بر اثر تأمین با بخار جیوه است. طیف وسیعی از اختلالات تنفسی، روانی، قلبی- عروقی، مغزی، دیگر چیزی، کبیدی، کلیوی، خونی، گلویی، اسکلتی- عضلانی ایمونولوژیکی، حسی و ادراری و زنوتکسیک از اثرات جیوه می‌تواند باشد.

نشان‌های اولیه مواجهه با جیوه

- تاری دید
- تحریک‌پذیری
- سوزش، خارش پوست
- التهاب‌های گلو
- زخمی‌سازی دهان
- راه افتادن آب دهان

نشان‌های ثانویه مواجهه با جیوه

- پی‌های حسی و سوزش
- لرزش‌ها و تامور
- فقدان هماهنگی
- فعالیت ویژه و شنوایی
- تنگی نفس

گروه‌های در معرض خطر بیشتر

- کودکان و به ویژه در دوران جنینی
- جمعیت‌هایی که مربوط ماهی و غذاهای دریایی مصرف می‌کنند.
- برنامه‌های جنینی
- کارگران کارخانه‌هایی که در محل کار با جیوه مواجهه دارند
درمان مسمومیت با چیوه:

قطع فوری تامس، درمان های حمایتی و درمان با ترکیبات کلیتور (شلاتور)، راه های اصلی درمان مسمومیت با چیوه می باشند. چیوه فلزی با کلیتورها واکنش نمی دهد، معنی دارد ۸۰٪ چیوه فلزی در اکسید شده و به کلیتورها جواب می دهد. در مقایسه با سایر فلزات سنجین، استفاده از ED TA در درمان مسمومیت با چیوه، نسبت به ترکیبات دارای گروه سولفیدریل از اهمیت زیادی برخوردار نیست. ترکیبات منه تیول مانند گلوتاتیون، سیستین، پت سیلامین و مشتقات N استیله آن ها قادر به حذف چیوه از پروتئین ها و مولکول های زستی می باشند. ترکیبات دی تیول مانند BAL (دی مکاپتوسکسینیک اسید) با ایجاد یک ساختار ۵ ضلعی محکم، به عنوان کلیتورهای مؤثر در درمان مسمومیت با چیوه کاربرد دارند.

با توجه به این که این فلز خطرناک ممکن است به صورت ناخواسته در دسترس اطفال قرار گیرد، لذا لازم است اطلاع رسانی مناسب در زمینه خطرات و رعایت اصول کار با چیوه و ترکیبات آن مورد توجه بیشتر قرار گیرد.
کنترل مواجحه با چیوه:

برای پیشگیری از خطرات چیوه به خصوص در محل کار باید آن را کنترل کرد که این امر باید طبق سلسله مراتب کنترل (حذف، جایگزینی، اقدامات فنی مهندسی، اقدامات مدیریتی و تجهیزات حفاظت فردي) صورت گیرد. همانطور که می‌بینید بهترین راه کنترل چیوه، حذف کامل مواجحه با آن است که این کار باید به وسیله درخت آلایین ریسک (شامل مدیریت ریسک، ارزیابی ریسک، ارتباطات ریسک) صورت گیرد. به این منظور می‌توان از روش‌های بیولوژیکی نیز استفاده کرد و میزان چیوه را در بدن افراد در مواجحه به دست آورد. به منظور پیشگیری از خطرات چیوه یکی از راه‌های مهم دیگر جایگزینی چیوه با مواد بی خطر یا کم خطرتر است که خوشبختانه برای بسیاری از محصولات چیوه در جهانی جایگزینی وجود دارد.

در هنگام مدیریت ریسک ناشی از چیوه باید از هر چیز نیاز به ارزیابی ریسک ناشی از آن داشته و این ارزیابی ریسک نوعی ارزیابی اطلاعات علمی به عنوان پایه ای برای تخمین و ارزیابی اثرات بالقوه بر سلامتی است که فرد یا یک گروهی ممکن است در اثر مواجحه با مواد خطرناک تجربه کند. ارزیابی ریسک مهم‌ترین می‌تواند شامل ارزیابی ریسک سرطان و پتانسیل توسه اثرات بهداشتی غیر سرطانی مثل اختلال عصبی گردید. برای حصول ریسک با احتمال اثرات نامطلوب پیداشتی، اطلاعات کمی در مورد مواجحه با اطلاعات مربوط به سببیت ترکیب می‌گردد.

![scheme 3- برادایم(انگاره الگو) آنالیز ریسک](شکل 3- برادایم(انگاره الگو) آنالیز ریسک)
بيش از توضیح بیشتر فرآیند آنالیز ریسک بهتر است با مفاهیم ریسک و خطر آشنا شویم.

خطر: پتانسیل ایجاد آسیب را گویند.

ریسک: احتمال ایجاد آسیب را گویند.

با توجه به این تعریف و با توجه به الگوی که برای آنالیز ریسک ارائه شد متوجه می‌شویم که برای مدیریت یک ریسک باید ابتدا نسبت ریسک آن ریسک را ارزیابی کرد که ارزیابی ریسک ابتدایی ۴ مرحله ای است که به ترتیب زیر شرح می‌گردد:

شناسایی خطر: بررسی اطلاعات سرمایه‌داران، و مهارتی برای شناسایی اثرات نامطلوب و مرتبط

با این نظریه و برخی از اثرات نامطلوب پیش‌بینی ویژه‌ای را تعریف می‌کند. این عمل معمولاً شامل یک آدام کمی اثرات پیش‌بینی ویژه برای یک دامنه از دوره‌ها باشد. برای مواد سرطانی، داده‌های دور پیش‌بینی محسوس به پیامدهای این مواد سرطانی داده‌های رود را برای شناسایی که باعث اثرات نامطلوب پیش‌بینی به‌طور سریع‌تری به استفاده می‌شود که می‌توان به این ماده و فرایندها و امکانات کنترلی و سفارشی مواجهه با دست‌آورد.

توصیف خطر شامل ارزیابی دوز- پاسخ:

رابطه بین درجه مواجهه ای مقادیر دوز مشاهده شده در حیوان و انسان و وزن‌گرای اثرات نامطلوب پیش‌بینی می‌شود. مطالعات اپیدمیولوژیکی و حیوانی برخی از اطلاعات مورد بررسی هستند. برای شناسایی خطر مثلی در مورد خطر جدایی می‌توان بررسی اطلاعات مربوط به نوع تولید یا مواد خام کارخانه‌ای و ارزیابی آن وجود جیوه را در آن صنعت شناسایی کرد که متایی که از این ماده احتمالاً استفاده می‌کند در ادامه این مدت آمد است. سپس می‌توان با توجه به این ماده و فرایندها و امکانات کنترلی و سفارشی مواجهه با دست‌آورد.

ارزیابی مواجهه:

در ارزیابی مواجهه مقدار مدت، فراوانی و وزن‌گرای مواجهه با مواد شیمیایی از طریق راههای گوناگون (گوشواره، تنفسی یا بدن ناف) برای افراد با جمعیت‌های برنامه‌ریزی و یا برای می‌تواند بوسیلهٔ اندوز هر یک از مواد شیمیایی در بافت‌های گوناگون بدن مثل مو، خون و ادرار به عنوان بیمارگر یا نشانگر زیستی یا بوسیلهٔ کاربرد مدل (فرمول) یک گوناگونی ریاضی برآورد شود. ارزیابی مواجهه می‌تواند برای ارزیابی ریسک و انرژی‌ریزی یافته و روند‌ها و ایپیدمیولوژی مربوطه استفاده شود. در صنت می‌تواند:

اکثر موارد ریاضی به دست آمد می‌آید.

توصیف ریسک:

از ادغام شناسایی خطر و توصیف خطر (با لحاظ ارزیابی دوز پاسخ یا ارزیابی مواجهه برای شرح طبقه‌بندی و وزن‌گرای ریسک یا عیب پیداشته در یک جمعیت معلوم) جمعیت حامل می‌آید. توصیف خطر همچنین شامل ارائه عدم اطمینان ها در ارزیابی، بحث در مورد درجه اطمینان، فقدان داده‌های محدودیت‌ها و دیگر ملاحظاتی که به شرح ریسک بالقوه کمک می‌کند.

هر گاه ارزیابی مواجهه و تشخیص ریسک تکمیل شد، نتایج چنین ارزیابی ریسکی می‌تواند سپس برای کمک به شناسایی جمعیت در مواجهه استفاده شود و به دولتمردان و دیگر ارگان‌ها کمک کند تا برنامه‌های و استراتژی‌های مناسبی را برای ریسک بالقوه توزیع دهد.
ازیابی مواجهه با جیوه:

برای تعیین ارتباط عوامل شخصی و عوامل بهداشت شغلی در مواجهه با جیوه، تا کنون روش‌های مختلفی برای تعیین سطوح جیوه در هوا، تنفسی، خون و ادرار در محیط کار ارائه شده است. روش‌های قبلی نمونه برداری از بخار جیوه شامل جذب سریع جیوه بر روی طلا، پرودن فلز و سپس اندازه‌گیری توسیع مقادیر طیف جذب آنی (AAS) و یا تجزیه به روش فعال سریع نتیجه‌گیری (CNAA) و روش‌های تیزی‌زود که معمولاً "نیاز به نمونه برداری طولانی مدت دارند. همچنین استفاده از طیف سنگ‌افزارهای فلورسنس اتمی بخار سرده کروماتوگرافی (HPLC–ICP–MS) و کروماتوگرافی گازی (GC–IP–MS) از دیگر روش‌های جداسازی و تشخیص مقادیر مختلف جیوه عirschی در می‌باشد. اگرچه روشهای کلاسیک برای تجزیه مولکول‌های آیلی می‌باشند، این روش‌ها معمولاً صورت به نیز می‌تواند به عنوان یک روش جایگزین برای تجزیه ترکیبات غیر آیلی نیز مورد استفاده قرار گیرد.

به‌طور کلی، اندکی جیوه کل در خون و ادرار می‌باشد. مطالعات نشان می‌دهد که در اندکی جیوه ادرار عملی ترین و حساس ترین روش برای نشان دادن مواد شلیکت با غلفت های پایین‌تری بیشتری می‌باشد. اندکی جیوه در خون را می‌توان در دو بخش خون کامل و بلطی انجام داد و به این ترتیب می‌توان مواجهه شغلی با جیوه فلزی و مواجهه غیر شغلی ناشی از غلبه‌ها دریاپی در مشخص کرد. در صورتی که جیوه ادرار فقط نماینده مواجهه با جیوه غیر آیلی است، بعد از مواد شلیکت، جیوه در ادرار حاصل شده و در خون به آرامی کاهش می‌یابد. حداکثر غلبه‌ها خونی جیوه در خون 2–3 روپز از مواجهه افتاق می‌افتد. لذا آنالیز خون پس از مدت طولانی، قادر به اطمینان می‌باشد که جیوه به جهت اکسید شدن هگس ممکن است به دنبال نمایش حاد با آمالگام، با ارزیابی مکان Hg⁰ که هفتم می‌باشد. دفع Hg⁰ در جیوه ادراری گرد. تجزیه مو به سبب وجود همسترین بین جیوه خون و مو دارای اهمیت اخیاری Hg⁰ است. با توجه به رشد مو (حوادث) می‌توان سر به پیش‌رفت مسوم‌می‌ریا انجام انجام اجرای مو بررسی نمود. تجزیه مو خصوصاً در بررسی مواد شلیکت با سلیقه جیوه که به ترکیبات مو بیو‌سنتیک دار، حائز اهمیت است.

مطالعات نشان می‌دهد که ادرار افراد دارای بیش از 36 ترمیمی دندانی، به طور متوسط دارای 30 جیوه در مقایسه با گروه کنترل/1 nmol/l 6 فاقد ترمیمی با آمالگام می‌باشد. گزارشات WHO میداند Hg⁰ محاسبه شده از 6 nmol/l در مقایسه با گروه کنترل/1 نمایش در 26 nmol/mmol Crea. افزایش دفع ادراری جیوه نشان می‌دهد/2 nmol/l. 50 هوا می‌باشد. همچنین مقادیر Hg⁰ در باربد افرادی که پرکردنگی های آمالگامی برابر 8/2 μg/m3 می‌باشد، که 100 برابر سطح جیوه در هواهای ازدحام افراد بدون پرکردنگی های آمالگامی است. افرادی که تعداد ترمیم آمالگامی زیادی دارند، روزانه حدود 12–100 جیوه جذب می‌کنند. وجود جیوه در بدن 28
شمشیر ماهی هایی هایی می‌شود. قیمت جوهر و امریکا هایی استفاده روزانه جوهر در هم‌تیپ گزارش شده است. مقدار جوهر از میزان‌های توسط فنده برای موارد مختلف و غیر آن‌ها در به‌کارگیری نشان‌دهنده داده شده است. که جذب جوهر فلزی از آملانگ می‌تواند به بیشتر از 21 μg/day نیز افزایش یابد.

مقدار حدود مجاز جوهر:

سازمان‌های EPA و ACGIH، OSHA، NIOSH در هوای مصرف مجاز تاسیس‌های جوهر فلزی و غیر آن‌ها μg/m3 50 μg/m3 25 μg/m3 10 μg/m3 اعلام نموده‌اند. حد استاندارد ای (NOAEL) برای مواد‌های استنشاقی مزمن با جوهر توصیه نشده، معنادیکی 9 μg/m3 گزارش شده است. مقدار شاخص بیولوژیکی (BEI) جوهر کل در ادرار WHO (µg/g Creat.) نموده که جوهر آب‌های اشامیدنی باید 1 mg/l باشد که این حدود مطابق با استانداردهای بین‌المللی آب های طبیعی مورد رصد جهت پیش‌بینی است.

وظایف دولت‌هایان:

• تهیه یک اینٹونوری برای استفاده در موارد مصرف جوهر برای درک بهتر از میزان استفاده و نشر جوهر در کشور با مناطق خاص آن
• یافتن راه‌های برای کنترل استفاده، انتشار و دفع جوهر
• آموزش شهروندان، صنایع و کارکنان خدمات بهداشتی در مورد ریسک‌های ناشی از جوهر
• کار با صنعت، کارکنان خدمات بهداشتی، شهرداری و سازمان‌های غیرانتفاعی برای توسعه یک استراتژی کاهش جوهر
• نظرات بر انجام ارزیابی‌های ارزیابی مواجهه
• تعمیم سطح ریسک گروه‌های در خطر

بررسی راه‌هایی به دستیابی به حداقل رساندن مواضع با جوهر و اثرات مضر آن در بدن به‌سیاری با اهمیت می‌باشد. جوهر نیز مانند سایر فلزات سنگین تیمیله به تجمع در ارگان‌های زندگی را دارد. لذا باید پنداشته با استفاده از روشهای گوناگون آن را تحت کنترل قرار داد. این روش‌های مختلف در واقع روشهای فیزیکی، شیمیایی و
پیژندگی هستند که در نهایت باعث حذف چیوه موجود در محیط زیست شده شد. ارزبایی چیوه با تشکیل جلسه کمیته کارشناسان FAO/WHO در ۴ آوریل ۱۹۷۲ در Genera در سال ۱۲۴۳ میلادی به ترتیب است (power plants) برآورد شده که به اکثریت زیر بطور محدود با ۱/۲ میلیون دلار هزینه کرده. در جهتی که اگر هزینه های مستقیم و غیر مستقیم ناشی از بیماری های مربوط به چیوه و همچنین هزینه‌های اجتماعی مرتبط با نیز مانند هر قرار دهیم، اگر اهمیت موضوع مشخص تر می‌گردد.

در مورد هزینه‌های ناشی از چیوه و ترکیبات آن در ایران، مناسفانه مطالعه ای صورت نگرفته است و لی‌بای توجه به مطالعات سابر کشورها پس از مشخص کردن مناطق تحت تهدید، امکان مطالعات مربوط به توجه با مطالعات سابر کشورها این هزینه ها تشکیل می‌داند. در این میان مطالعات مربوط به توجه با مطالعات سازمان محیط زیست در آن هنگام بسیار ماهی هم به این میزان چیوه، چندین برابر حدود مجزا گزارش شده است. بالاترین رکودی که در سال گذشته ثبت شده است ۱۴۵۲ می‌باشد، در حالی که حد مجاز چیوه ۱۵۰ ppb می‌باشد. در طول ۱۴ سال از مناطق زیست محیطی که در تالاب فیلتر مشکل اکثریتی چیوه در آن می‌باشد، تالاب انزلی این، که میزان بالای اکثریتی آن به خاطر فاضلابهای این است که به این تالاب وارد می‌شود. با توجه به این که برای این چیوه از شاخص‌های اکثریتی (power plants) مختلفی مثل میزان چیوه در بدن صدف‌ها، ماهیان و غیرنظامی استفاده می‌شود (در بند انزلی از خون، ادرار، بدن‌ناف و استفاده می‌کنند)، در مطالعه ای در کشور، ماهی زروک به عنوان یک نشانگر زیستی مناسب در آب‌های خلیج فارس معرفی شده است.

لذا حذف چیوه یک اولویت و برنامه جهانی بوده و تهیه، تدوین و اجرای برنامه ای که برای این مشکل را برطرف کند الزامی می‌باشد. برای پیش گیری از خطاهای چیوه جهانی، تحقیق کامل مشاهده با آن است که این کار باید به وسیله ارزبایی صورت گیرد. به این منظور می‌توان از روش‌های ارزبایی پیلی‌پولی‌یکی نیز استفاده کرد. چیوه را در بند افراد در مراقبه به دست آورده. به منظور پیشگیری از خطاهای چیوه مقایسه‌ای از راه‌های مهم چای‌گذاری چیوه با مواد بی‌خطر یا کم خطرتر است که خوشبختانه امکان آن وجود دارد. UNEP طبق برنامه‌های برنامه جامع سازمان جهانی به دو روش یک چیوه حذف و کاهش چیوه و مواد حاوی چیوه تحت عناوین لیست مشترک و لیست منفی پیشنهاد شده است. لیست مشترک بنیاد معنی است که تولید، صرف و حمل و نقل کلیه مواد و ترکیبات حاوی چیوه، به جز موادی که طی این لیست مشخص شده، اجازه استفاده دارند. لیست منفی نیز بدون معنای است که تولید، صرف و حمل و نقل کلیه مواد و ترکیبات حاوی چیوه، به جز موادی که در طی این لیست اعلام شده، ممنوع است. روبرویی که به نظر می‌رسد، علی‌بخش برنامه جامع سازمان جهانی تا برطرف می‌کند.
رسد با توجه به شرایط کشور در قالب برنامه عملیاتی قابل اجرا باشد، رویکرد لیست منبت می‌باشد. در این راستا مراکز سلامت بهداشت مheeیت و کار وزارت بهداشت، درمان و آموزش پزشکی، در قالب یک طرح پژوهشی تحت عنوان کاهش و حذف جیوه و جایگزینی آن با مواد پی‌بی‌کم خطر با کم حفظ و ارتباط سلامت علوم جامعه تا پایان سال ۹۵، استراتژی و فعالیت‌های زیر را پیشنهاد نموده است:

استراتژی‌ها

آموزش مخاطرات، روش‌های نمونه برداری، تجزیه و راه‌های کنترل جیوه به کارشناسان شامل در

- کارگاه‌های در مواجهه با جیوه
- آموزش مخاطرات و راه‌های کنترل جیوه به کارگران و کارفرمایان کارگاه‌های در مواجهه با جیوه
- آموزش رسانه‌های عمومی جامعه نسبت به خطرات جیوه و راه کارهای کنترل مواجهه
- جلب و تقویت مشارکت سازمان‌های مرتبط، جهت کنترل و حذف جیوه از کارگاه‌ها و کارخانجات
- اطلاع رسانی در مورد جایگزینی جیوه با مواد کم خطر و توسعت مکان‌های اقتصادی و فنی در

تیپت و تدوین پروتکل و آمین نامه اجرایی کنترل و حذف جیوه از کارگاه‌ها و کارخانجات

ارائه روش‌های کاهش مواجهه با جیوه در شرایط فعلى مصرف و تا پایان اجرای برنامه حذف وکاهاش

تقویت بازرگی‌های کارشناسان بهداشت حررفه ای و مهیج با روش‌هایی که بهتر نیافته وی‌بال به مسئول جیوه

علامت لیست مواد، ترکیبات و تجهیزاتی که به علت استفاده از جیوه به‌این‌جا گروه‌بندینان یا حذف شوند

تیپت و تدوین پروتکل‌های همکاری سازمان‌های ذی‌ربط برای دفع و امتحان صحیح پسمانده‌های لامپ

- های حاوا جیوه

- پايش و انداده‌گیری جیوه مهیج‌ی

فعالیت‌ها

تدوین برنامه عملیاتی جیوه و ابلاغ به کلیه دانشگاه‌های علم پزشکی کشور

- تعمیم اولویت‌های برنامه

برگزاری کارگاه آموزشی برای کارشناسان مستند و سایر گروه‌های هدف

- تیپت چک لیست‌های لازم در مورد کنترل جیوه توسط کارفرمایان و کارشناسان بهداشت حرطرف

شامل در صنایع

- تیپت هذهعمل شوری برچسب‌های جهت استفاده‌های مصرفی جیوه و ترکیبات آن و علامت

- گذاری محل‌های خطر مرتبط با جیوه

31
تهیه دستورالعمل نحوه ارزیابی و شناسایی مناطق کارگاه‌ها و افراد در خطر مواجهه با جیوه

تهیه دستورالعمل ها و راهنمای کار ایمن با جیوه و ترکیبات آن به همراه ارائه گایگذاهنگ های کم خطر و بی خطر

ارائه روش استاندارد نمونه برداری و تجزیه نمونه‌های حاوی جیوه

تهیه و تدوین مجموعه های آموزشی در مورد خطرات جیوه و نحوه پیشگیری از آن برای گروه‌های هدف مختلف

طرحی فرم ثبت نتایج انتزاع جیوه در محل های مورد ارزیابی برای آزمایشگاه‌های مربوطه

طرحی برگه‌های نرم افزاری مربوط به آمارهای جیوه (مطالب فرم‌های بین المللی) به منظور تهیه پروفایل ملی جیوه ارزیابی و مقاومت اطلاعات جمع‌آوری شده

تهیه راهنما شناسایی مناطق و افراد در معرض خطر مواجهه با جیوه

تهیه نمایه ملی جیوه (تشکیل اطلاعات مرتبط با چگونگی مصرف، منابع و مناطق برخطر و…) به منظور تهیه برنامه نرم‌افزاری نمایش روند اجرای برنامه به صورت مصور

انجام اقدامات لازم جهت شناسایی سازمان‌های ذی نفع جهت جلب حمایت های آنان تقویت بازرگانی های محیط های کار و ممنوع قرار دادن کارگاه‌های دارای ریسک فاکتور جیوه در درجه خطر 1 بازرسی هدف‌مند

انجام یپ گیری های لازم جهت اطمینان از اجرای برنامه‌های کنترل جیوه در کارگاه‌ها و نظارت بر عملکرد واحدهای تابعه

تهیه بررسی‌نامه اطلاعات شغلی در ارتباط با کارکنان در معرض مواجهه با جیوه

تهیه لیست‌یی از مواد و فرآیندها و تجهیزاتی که با اید ممنوع شوند. (لیست مشترک)

مشارکت در تدوین پروتکل استفاده صحیح و محدود سازی آمب‌های حاوی جیوه تدوین دستورالعمل اندازه‌گیری میزان جیوه در زنجیره‌های غذايي ذی ربط برای گروه‌های هدف مشمول برنامه

مسئول برنامه

اندام دستورالعمل اندازه‌گیری میزان جیوه در پسماندهای بیمارستانی برای گروه‌های هدف

مسئول برنامه

انجام اقدامات لازم جهت شناسایی کارگاه‌ها و صنایع تولید، مصرف یا نگاه داری جیوه

انجام اقدامات لازم پژوهشی جهت شناسایی و تهیه آمار وسایل و مواد مصرفی حاوی جیوه و ترکیبات آن
روش های نمونه برداری و تجزیه جیوه:

الف) روش نمونه برداری و تجزیه جیوه در هوا:

روش یک نمونه برداری و تجزیه جیوه فلزی و ترکیبات معدنی آن در متدهای NIOSH (ID 140) و OSHA (H2O2، آب اکسیژن (II هگزین) و دیونزه)

وسایل و تجهیزات مورد نیاز:

دستگاه جذب اتمی مجهز به سیستم بخار سرد، لوله جاذب سطحی، نماینده نمونه بردار فردي (با دقت 15/2000) 1/0.001 گرم، بالن زوئه، میکرو بیت و بطری BOD

مواد شیمیایی لازم:

- اکسید جیوه (II، H2O2)، اسید نیتریک 3، اسید کلریدریک (HCL) و HNO3

مراحل انجام کار

الف) نمونه برداری:

1) نماینده نمونه برداری را با استفاده از یک کالیبریتور مناسب، کالیبره نمایید.
2) جاذب سطحی را از طرفین درند و به نماینده نمایید.
3) با دبی L/min 15/2000 تا حجم 0.1-0.2 اقدام به نماینده نمایید. (با هر سری از نمونه ها، یک نمونه شاهد نیز تهیه کنید).
4) پس از خانمه نمونه برداری، دربیوش جاذب را گذاشته و به آزمایشگاه منتقل نمایید.

ب) آماده سازی نمونه:

- جاذب سطحی مورد استفاده را به همراه پشم شیشه و درون یک بان آکسید جیوه 50 ملی‌لیتر ملی‌لیتر.
- غلیظ به نماینده بیافزایید و ابتدا HCl 2/5 2 ملی‌لیتر و سپس HNO3 2 ملی‌لیتر نماینده را به مدت 1 ساعت باقی گذاشته تا جاذب به طور کامل حل شود.
- محلول را توسط آب دیونزه به حجم برسانید. رنگ محلول باسیستی آبی یا آبی مایل به سبز گردد.
- نماینده نمونه بیش از 80 ملی‌لیتر دیونزه اضافه کنید. چنان چه پس از بینی می کنید مقدار جیوه از استانداردها بیشتر است، می توانید مقدار نمونه برداشتی را کاهش دهید، ولی در هر صورت حجم نهاتی باسیستی 100 باشد.

ج) کالیبراسیون:
(1) محلول استاندارد مادرب جیوه (1000 μg/ml): این محلول را با حل نمونه 1/800 گرم کلرید جیوه در 50 ml 50 یاد کلرید کیکِ(و رساندن به حجم 1 لیتر توسط آب دیونیزه، تهیه نمایید.

(2) محلول استاندارد مایعی (μg/ml): برای ساخت این محلول، 1/00 محلول استاندارد مادرب به داخل یک بالن زوزه 100 ml حاوی 10 یاد کلرید کیکِ و سپس توسط آب دیونیزه به حجم رسانید.

(3) محلول های استاندارد کاربردی: محلول های کاربردها حاوی BOD مقادیر معینی از محلول استاندارد مایع به طریق های حاوی BOD محاسبه نمایند و در 00 ml حاوی BOD می‌باشد.

(4) اندازه‌گیری:

(1) دستگاه جذب اتی و سیستم بخار سرد را مطلوب توصیه شرکت سازنده تنظیم نمایید.

(2) گزارش BOD را ابتدا با آب دیونیزه آبکشی و سپس محلول استاندارد را به آن اضافه کنید.

(3) محلول کلرید قلع 20/00% در HCl به داخل یک بطری افزوده و صریح کنید که دستگاه جذب اتمی حداکثر میزان جذب را نشان دهد. (جهت ساخت این محلول، 20 gr کلرید قلع را در 100 ml غلیظ حل کرده و به بهعنی 100 آب دیونیزه به آن بیافزایید.

(4) میزان جذب را جهت استانداردهای کاربردویی قرایت و سپس منحنی استاندارد مربوطه را رسم و فلگلت جیوه نمونه را با تغییر نمایند.

(5) محاسبه غلظت جیوه در هوا:

با استفاده از رابطه زیر غلظت جیوه در هوا را محاسبه نمایید:

\[
C = \frac{W \cdot V_s - B}{V_a}
\]

که در آن:

\[mg/m^3\text{ غلظت جیوه در هوا بر حسب } C\]

\[V_s\text{ حجم بالین زوزه در مرحله 1 آماده سازی نمونه (50 ml)}\]

\[V_a\text{ حجم نمونه در بطری BOD در مرحله 5 آماده سازی نمونه (20 ml)}\]

\[\mu g\text{ میانگین غلظت جیوه در نمونه شاهد بر حساب Lit}\]

\[V\text{ حجم هواي نمونه برداري شده بر حساب } W\]

\[\mu g\text{ غلظت نمونه بر حساب Lit}\]

Stock ^

Working Standard ^
ب) روش نمونه برداری و تجزیه جیوه در خون:

تعیین میزان غلظت جیوه خون، شاخص بیولوژیکی ارزندن ای جهت تعیین میزان مواجهه با جیوه در محیط های کاری است. فشار بخار جیوه (200/0.105 mmHg، در °C 0، اندوزه گیری این عنصر را به روش بخار سرد امکان پذیر می‌سازد.

وسایل و تجهیزات مورد نیاز:

دستگاه جذب اتمی مجهز به سیستم بخار سرد، اتکویاتور، ترازوی حساس (با دقت 1/1000 گرم)، ورتکس، بطری BOD، لوله های آزمایشی یک بار مصرف، بالن زؤه، پیپ، سرنگ استریل، 5 میلی لیتری با سرسوزن شماره 21، پنیه الکل، تورینیکه و پویار لاستیکی.

مواد شیمیایی لازم:

اکسید جیوه (II) H2SO4، اسید سولفوریک H2O2، اسید گلیکیدیک HCl، HgO، آب اکسیژنی ه2O، هیدروکسیل آلی هیدروکلاراید KMnO4، هیدروکسیل آلی هیدروکلاراید HONH3Cl، کلرید قلع SnCl2.

روش کار:

در این روش تمامی جیوه موجود در نمونه به شکل بخار جیوه (بخار اتمی خشک) درآمده و از طریق گاز آرگون، به داخل سول جاذب دستگاه هدایت می‌گردد. در نهایت میزان غلظت جیوه خون از مقابله مقدار جذب نمونه با منحنی کالیبراسیون در طول موج 253/7 نانومتر به دست می‌آید.

الف) نمونه برداری:

(1) یک نمونه خون توسط سرنگ تهیه نمایید.

(2) جهت جلوگیری از انتقال حذف، حدود 1000 i.u (برای 5000 هیپیرین) به داخل لوله آزمایش ریخته و خون داخل سرنگ را پس از برداشت سرسوزن به آهستگی به آن اضافه نمایید. سپس لوله آزمایش را به مایمت تکان دهید تا هیپیرین به خون مخلوط شود. این نمونه در حرارت 37 درجه و در مدت 3 روز پایدار می‌باشد.

ب) کالیبراسیون:

(1) محلول استاندارد ماد (Stock) 1000 μg/ml را با حجم 10080 گرم کلرید جیوه در ml 1000 چیوه را با حل نمود.

(2) محلول استاندارد ماد (Stock) 1000 μg/ml را با حجم 1080 گرم کلرید جیوه در ml 1000 چیوه را با حل نمود.

(3) سیستم کلرید کلرید جیوه در ml 1000 چیوه را با حل نمود.

Cold Vapor
(۲) محلول‌های استاندارد کاربردی µg/ml به صورت تازه و روزانه تهیه گردد و با توانایی دقیق کردن محلول استاندارد ماده توسط اسید کلریدریک ۱:۱ سازید.

(ج) آماده سازی:

۱) نمونه خون داخل لوله های آزمایش که از قبل به دقت شسته و توسط آب دیونیزه آبکشی شده بریزید.

۲) به هر لوله ۲ ml H2O2 و ۱ ml H2SO4 اضافه کنید.

۳) نمونه‌ها را به مدت ۲۰ دقیقه در دمای C ۲۵ درصد افزوده و سپس نمونه‌ها را مجددا به مدت ۲۰ دقیقه در دمای C ۵۰ درصد کنید.

(۴) به هر نمونه مدلاری هیدروکسیل آمین هیدروکلراید ۱۲٪ به نمونه‌ها اضافه کنید، تا رنگ بنفش نمونه به رنگ سفید تبدیل شود (در صورت لزوم).

(۵) حجم کلیه نمونه‌ها را توسط آب دیونیزه به ۱۰ ml رسانده و جهت اندازه‌گیری جیوه به داخل بطری BOD ثبت نمایید.

(۶) جاع‌واگر کیفیت:

(۱) دستگاه جذب اتمی و سیستم بخار سرد را مطابق توصیه شرکت سازنده تنظیم نمایید.

(۲) محلول کلرید قلع SnCl2 در HCl به نمونه‌ها اضافه نموده و حداقل ۲ ساعت سخت کردد.

(۳) منحنی استاندارد مربوطه را رسم کنید و نقطه جیوه نمونه‌خون را تعیین نمایید.

مراحل فوق را به طور هم زمان جهت محلول‌های استاندارد کاربردی و بلانک نیز انجام دهد.

(د) اندازه‌گیری:

(۱) دستگاه جذب اتمی و سیستم بخار سرد را مطابق توصیه شرکت سازنده تنظیم نمایید.

(۲) محلول کلرید قلع SnCl2 در HCl به نمونه‌ها اضافه نموده و حداقل ۲ ساعت سخت کردد.

(۳) منحنی استاندارد مربوطه را رسم و نقطه جیوه نمونه‌خون را تعیین نمایید.

3. خاموشی، رضا. "آبزدگی و درد اثرات آنانیک‌های محیطی." تیرهای 12، شماره 14، صفحات 43-47.

4. سیدی، محمد. "آموزش سطحی کننده در سیستم‌های سیستم‌های حیاتی و محیط زیست." تیرهای 2، شماره 3، 1387.

5. فلورانی، حسین. "یکی از گروه‌های اصلی در تحقیقات محیط زیست." (شنیده در کناره‌ای). صفحات 48-84.

Wai on phoon, Ramnik Parekh, occupational and environmental health, page 196, 2008

Occupational toxicology, Stacy and winder, chapter 8. Page 291, 2009

GUIDANCE FOR IDENTIFYING POPULATIONS, AT RISK FROM MERCURY EXPOSURE, Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases, August 2008

Public Health and Economic Consequences of Methyl Mercury Toxicity to the Developing Brain

Leonardo Trasande,1,2,3,4 Philip J. Landrigan,1,2 and Clyde Schechter VOLUME 113 , NUMBER 5 , Environmental Health Perspectives May 2005

Environmental costs of mercury pollution, Lars D. Hylander a,□, Michael E. Goodsite

GUIDANCE FOR IDENTIFYING POPULATIONS, AT RISK FROM MERCURY EXPOSURE, August 2008, Issued by UNEP DTIE Chemicals Branch and WHO Department of Food safety, Zoonoses and Foodborne Diseases, Geneva, Switzerland

TOOLKIT FOR IDENTIFICATION AND QUANTIFICATION OF MERCURY RELEASES Guideline, for Inventory Level 1, Version 1.1 January 2011