Chemical Accident Management

Dr. Omid Kalatpour

CEOH

Preface

- □ Chemical releases arising from technological incidents, natural disasters, and from conflict and terrorism are common.
- □ The International Federation of the Red Cross has estimated that between 1998 and 2007, there were nearly 3200 technological disasters with approximately 100,000 people killed and nearly 2 million people affected.

The Epidemiology of Chemical Incidents

✓ Since the middle of the twentieth century, chemicals have played an increasing role in the **worldwide economy**.

3

 Currently, more than 15 million chemical substances are commercially available.

Approximately 60000 to 70000 chemical substances are in regular use and between 200 and 1000 chemicals are produced in excess of one tone annually.

Examples of chemical incidents worldwide

Year	Location	Description of incident	Consequences
1976	Seveso, Italy	Airborne release of dioxin from an industrial plant	 No immediate human deaths 3 300 animal deaths 80 000 animals slaughtered
1984	Bhopal, India	Methyl isocyanate (MIC) leak from a tank	 3800 immediate deaths 15 000 to 20 000 premature deaths 500 000 exposed to the gas
1984	Mexico City, Mexico	Explosion of liquefied petroleum gas (LPG) terminal	 500 deaths 6400 injuries
1995	Tokyo, Japan	Deliberate release of a warfare agent	 12 deaths 54 critical casualties Thousands of people affected
2000	Enschede, The Netherlands	Explosion of a fireworks factory	 20 deaths, 562 casualties Hundreds of houses destroyed 2000 people evacuated
2001	Toulouse, France	Explosion of 300–400 tonnes of ammonium nitrate in a fertilizer facility	 30 deaths 2500 casualties 500 homes uninhabitable
2002	Galicia, Spain	Shipwreck of the <i>Prestige</i> , causing the release of 77 000 tonnes of fuel	Estimated clean-up costs of US\$ 2.8 billion
2002	Jabalpur, India	Mass poisoning due to the use of pesticide containers as kitchen utensils	 Three deaths At least 10 hospitalizations
2003	Baton Rouge, USA	Release of chlorine gas from a facility	No human deaths
2004	Neyshabur, Iran	Train explosion due to mixing of incompatible chemicals	 Hundreds of deaths and casualties among emergency responders and onlookers
2005	Songhua River, China	Plant explosion releasing 100 tonnes of pollutants in the Songhua River	 Five deaths Millions of people without water for several days
2005	Bohol, The Philippines	Inadvertent use of an insecticide in the preparation of sweets	 29 deaths 104 hospitalizations
2005	Hemel Hempstead, England	Three explosions in an oil storage facility (Buncefield depot)	 43 reported injuries 2000 persons evacuated
2006	Abidjan, Côte d'Ivoire	Dumping of toxic waste in the city of Abidjan	• 10 deaths, thousands made ill
2006	Panama	Diethylene glycol in a cough syrup	At least 100 deaths
2007	Angola	Sodium bromide confused with table salt	• At least 460 people ill, most of them children
2008	Senegal	Lead from informal battery recycling	 People exposed with many children showing symptoms of lead intoxication

انفجار گاز در Longford استرالیا

حادثه PEMEX مکزیک

حادثه بوپال هند

Seveso

- July 1976 plume of (TCDD) contaminated vapors is released from a **pesticide plant** in the town of Seveso, Italy.
- Some **37,000 people were exposed** to the <u>highest</u> levels ever recorded of a dioxin.
- Over 600 people were evacuated and several <u>thousand</u> were treated for dioxin poisoning, evidenced mainly by chloracne.
- Over **80,000 animals were slaughtered** to prevent the toxins entering food chains.

Nishapur train disaster

8

- The Nishapur train disaster was a large explosion in the in Iran, on 18 February 2004.
- Over **300 people were killed** and the entire village destroyed, when **runaway train** wagons crashed into the **community** in the middle of the night and exploded.

Hazardous Material

9

• Any substance or material in a **quantity or form** which poses an **unreasonable risk** to health, safety and property when <u>transported</u> in commerce.

U.S. Department of Transportation

Hazardous Chemicals

10

• Any chemical which presents a physical hazard or a health hazard to employees.

Extremely Hazardous Substances

11

• Chemicals determined by the US.E.PA to be **extremely hazardous** to a <u>community</u> during an **emergency spill or release** as a result of their <u>toxicities</u> and <u>physical/chemical</u> properties.

EPA/Chemical Emergency Preparedness

Generator

12

Secondary Transporter

Injury Mechanisms

Fire produces injuries
An explosion produces traumatic (mechanical) injuries
Toxicity
Mental health effects

CHEMICAL ACCIDENT

Chemical Incident Scenarios

14

Chemical properties
Environmental condition
Container properties
Ignition sources
Weather condition

- Vapor density
- Molecular weight
- Specific gravity

Toxicity
LEL and UEL
Boiling point
Odor/ color ,...

Physical and Chemical ADD WATER Properties ADD OXYGEN

• ADD NEARBY

Examples of Incident Scenarios

16

- **1. Sudden evident outdoor release of gas or vapor**
- 2. Sudden evident outdoor release of an aerosol
- 3. Sudden evident release to contact media other than air
- 4. Fire in a large building
- **5. Explosion**
- 6. Disease outbreak
- 7. Silent releases

The Disaster Management Cycle

- 1. Prevention
- 2. Preparedness
- 3. Detection and alert
- 4. Response
- 5. Recovery

Prevention

18

- 1. Protection layers
- 2. Scenario analysis and impact assessment
- 3. Policy, legislation and enforcement
- 4. International regulations and tools
- 5. Prevention of chemical hazards for the public

Prevention- Scenario analysis

Prevention- Policy, legislation and enforcement

- Land-use planning
- Licensing of hazardous sites and transport routes
- Building regulations
- Control of chemical transportation and storage
- Labor health and safety
- Establishment hazardous site database
- omidohs@gmail.com

- Control of waste disposal sites
- Control of contaminated environment
- Emergency planning and response
- Inspection of hazardous sites and transportation

Global Regulations

21

- UN Recommendations
- IATA Dangerous Goods Regulations (DGR)
- International Maritime Dangerous Goods Code (IMDG Code)
- International Carriage of Dangerous Goods by Rail (RID)
- Globally Harmonized System of Classification and Labeling of Chemicals (GHS)

United States

- **Department of Transportation (DOT)** regulates hazmat transportation.
- OSHA- Hazardous Waste Operations and Emergency Response (HAZWOPER).

Superfund

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) referred to as the SUPERFUND law

Established for the **cleanup of toxic waste** sites

□ Set the groundwork for the regulating response to chemical emergencies

□ Superfund Amendments and Reauthorization Act (SARA)

Planning Groups

- State Emergency Response Committee (SERC)
- Local Emergency Planning Committees (LEFC)

Emergency Planning And Preparedness

- A. Gathering Useful Information
- B. Preparation of A Chemical Incident Response Plan
- C. Community Impact Assessment
- D. Incident Command
- E. Communication
- F. Building Human Capacities

Response Plan

- 1) Alerting
- 2) Assess the incident
- 3) Communication
- 4) Resources assigning
- 5) Describe ICS
- 6) Coordinate inter-agency relationships
- 7) Control Measures
- 8) Isolation, Sheltering and Evacuation
- 9) Decontamination and Recovery

27

OSHA vs. NFPA 19	94 Comparison Cha				
OSHA-Defined Threat	OSHA Level	NFPA 1994 Class	NFPA-Defined Threat		
Airborne and liquid concentrations are at or above IDLH* requiring the highest level of pro- tection for both respira- tory system and skin.	Level A: User and SCBA are fully encapsulated within the suit.	NA	NA		28
Airborne concentrations are at or above IDLH* requiring the highest level of protection for respiratory system. Liq- uid concentrations are below IDLH* allowing for a lesser level of skin protection.	Level B: User is encapsulated within the suit, while the SCBA is contained outside.	Class 2: User is encapsulated within the suit, while the SCBA is contained outside.	Airborne and liquid concentrations are at or above IDLH* requiring the highest level of pro- tection for both respira- tory system and skin.	Protection Leve	el
Airborne and liquid con- centrations are below IDLH* allowing for a lesser level of respira- tory and skin protection.	Level C: User is encapsulated within the suit and using an APR or PAPR.	Class 3: User is encapsulated within the suit and using an APR or PAPR.	Airborne and liquid con- centrations are below IDLH* allowing for a lesser level of respira- tory and skin protection.		
Nuisance, Non-Chemi- cal "Powder" Contami- nation	Level D: Use of basic shield PPE such as coveralls, disposable outer boots, safety glasses. Dust filter required for radia- tion contamination.	Class 4: User is wearing a dust filter APR and basic shield PPE such as cov- eralls, disposable outer boots, safety glasses.	Nuisance, Non-Chemi- cal "Powder" Contami- nation		

Managing hazardous materials incidents. Agency for Toxic Substances and Disease Registry, 2001 (http://www.atsdr.cdc.gov/MHMI/index.html).

FIGURE 8: CHEMICAL INCIDENT ZONING^a 1.thkitt Staging Crowd Control Line Area Drainage (Staging) Area Decontamination Line Command Post Access Control Points Hot Line Exclusion (Hot) Zone (1) Decontamination Corridor Contamination Reduction (Warm) Zone (2) Support (Cold) Zone (3) Wind Source: Adapted from Agency for Toxic Substances and Disease Registry (ATSDR) 2001.

30